Approximate Ambient Occlusion for Dynamic Scenes using the GPU

Shailen Agrawal*
UBC

(@) (b)

Subodh Kumart
IIT Delhi

Figure 1: (a) Nearest Neighbor query for a single point on hand (b) All neighboring triangles are returned, a part of which is the tip of the
thumb. All returned neighbors cause occlusion on the query point. Returned triangles are projected onto the view plane at the occlusion
vertex (c) Use a ratio of green and red areas to determine occlusion caused at the query point (d), (e) Some of the occlusion values can be
reused between two frames in a sequence if their neighborhood remains the same. For example the local neighborhood of the shown query
points in blue doesn’t change due to the head turn, so we must avoid reprojecting all the neighbors and recomputing occlusion for such.

1 Introduction

Ambient occlusion has been tackled in many different ways to in-
culcate realism into renderings. Ambient occlusion is a crude ap-
proximation to global illumination. But performing a full global
illumination in real-time has turned out to be computationally ex-
pensive. Combined with local rendering models, ambient occlusion
can produce renderings which have increased realism.

In this work an improvement over existing occlusion computation
techniques is proposed for use in rendering shadows for dynamic
scenes. Using modern GPU hardware, ambient occlusion in dy-
namic scenes can be rendered in real-time. Clever updation and
pre-processing techniques are required to accomplish this feat. The
main contributions of this technique are towards the development
of an approximate occlusion computation via projections onto the
view plane at the query vertex and a scheme which utilizes coher-
ence in both spatial and temporal domain to reuse already computed
occlusion values.

2 Our Approach

Occlusion is computed at each query point in the scene by deter-
mining the local neighborhood of the query point. The local neigh-
borhood search is accelerated using a kd-tree data structure which
is built on the GPU in real time using the technique mentioned in
[Zhou et al. 2008]. Since the scene is dynamic and we want to
maintain the kd-tree structure at each frame, it is essential that we
can construct the kd-tree quickly.

Once all the triangles in the local neighborhood are determined for
a query point, we project them onto the query point and determine
the occlusion. Using an approach like this, an occlusion computa-
tion will have to be performed for all query points for every frame.
We develop a scheme which utilizes spatial and temporal coherence
for reusing already computed occlusion values. This results in re-
duction of large number of new occlusion computations for query
points which can take advantage of coherence in space or time. The
query points can be per-vertex in which case the occlusion values
are passed onto a vertex shader for modulating local lighting.

*e-mail: shailen@cs.ubc.ca
Te-mail: subodh@cse.iitd.ac.in

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

Firstly we can use coherence in space. If the local neighborhood for
two query points close-by is similar then the same occlusion value
can be used for them instead of recomputing it for every such query
point. A neighborhood matching scheme is being developed where
fast neighborhood matches can be performed on the GPU. This uti-
lizes coherence in the recipient side. Only the local neighborhood
is used, so the model could change at a distance without changing
the occlusion at the query point. While projecting details we use a
simplified version of the scene which utilizes coherence in occluder
side.

Secondly we develop a scheme for utilizing coherence in time. As
shown in Figure 1 (d) and (e), there are points for which the lo-
cal neighborhood remains same across two frames in time. Hence
for points like these we can reuse the occlusion values instead of
recomputing it for each frame.

(a) Color coded image depicting (b) Direct lighting modulated with
ambient occlusion. ambient occlusion

Blue : no occlusion.

Black : full occlusion

Figure 2: Current state of rendering from the system

References

ZHou, K., Hou, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. In SIGGRAPH Asia
'08: ACM SIGGRAPH Asia 2008 papers, ACM, 1-11.



